,," /> " />

目 录CONTENT

文章目录

更多类型:结构体、切片和映射

听故事的人别流泪
2024-06-07 / 0 评论 / 0 点赞 / 10 阅读 / 10522 字

指针

Go 拥有指针。指针保存了值的内存地址。

类型 *T 是指向 T 类型值的指针,其零值为 nil。

var p *int
& 操作符会生成一个指向其操作数的指针。

i := 42
p = &i
* 操作符表示指针指向的底层值。

fmt.Println(*p) // 通过指针 p 读取 i
*p = 21         // 通过指针 p 设置 i
这也就是通常所说的「解引用」或「间接引用」。

与 C 不同,Go 没有指针运算。
package main

import "fmt"

func main() {
	i, j := 42, 2701

	p := &i         // 指向 i
	fmt.Println(*p) // 通过指针读取 i 的值
	*p = 21         // 通过指针设置 i 的值
	fmt.Println(i)  // 查看 i 的值

	p = &j         // 指向 j
	*p = *p / 37   // 通过指针对 j 进行除法运算
	fmt.Println(j) // 查看 j 的值
}

结构体

一个结构体 struct 是一组字段 field

package main

import "fmt"

type Vertex struct {
	X int
	Y int
}

func main() {
	fmt.Println(Vertex{1, 2})
}

结构体字段通过“.”来访问

package main

import "fmt"

type Vertex struct {
	X int
	Y int
}

func main() {
	v := Vertex{1, 2}
	v.X = 4
	fmt.Println(v.X)
}

结构体指针

结构体字段可通过结构体指针来访问。

如果我们有一个指向结构体的指针 p 那么可以通过 (*p).X 来访问其字段 X。 不过这么写太啰嗦了,所以语言也允许我们使用隐式解引用,直接写 p.X 就可以。

package main

import "fmt"

type Vertex struct {
	X int
	Y int
}

func main() {
	v := Vertex{1, 2}
	p := &v
	p.X = 1e9
	fmt.Println(v)
}

使用 Name: 语法可以仅列出部分字段(字段名的顺序无关)。

特殊的前缀 & 返回一个指向结构体的指针。

package main

import "fmt"

type Vertex struct {
	X, Y int
}

var (
	v1 = Vertex{1, 2}  // 创建一个 Vertex 类型的结构体
	v2 = Vertex{X: 1}  // Y:0 被隐式地赋予零值
	v3 = Vertex{}      // X:0 Y:0
	p  = &Vertex{1, 2} // 创建一个 *Vertex 类型的结构体(指针)
	q=&v1
)

func main() {
	fmt.Println(v1, p, v2, v3,q)
}

数组

类型 [n]T 表示一个数组,它拥有 n 个类型为 T 的值。

表达式

var a [10]int

会将变量 a 声明为拥有 10 个整数的数组。

数组的长度是其类型的一部分,因此数组不能改变大小。 这看起来是个限制,不过没关系,Go 拥有更加方便的使用数组的方式。

package main

import "fmt"

func main() {
	var a [2]string
	a[0] = "Hello"
	a[1] = "World"
	fmt.Println(a[0], a[1])
	fmt.Println(a)

	primes := [6]int{2, 3, 5, 7, 11, 13}
	fmt.Println(primes)
}

切片

每个数组的大小都是固定的。而切片则为数组元素提供了动态大小的、灵活的视角。 在实践中,切片比数组更常用。

类型 []T 表示一个元素类型为 T 的切片。.

切片通过两个下标来界定,一个下界和一个上界,二者以冒号分隔:

a[low : high]

它会选出一个半闭半开区间,包括第一个元素,但排除最后一个元素。

以下表达式创建了一个切片,它包含 a 中下标从 1 到 3 的元素:

a[1:4]
package main

import "fmt"

func main() {
	primes := [6]int{2, 3, 5, 7, 11, 13}

	var s []int = primes[1:4]
	fmt.Println(s)
}

切片就像数组的引用 切片并不存储任何数据,它只是描述了底层数组中的一段。

更改切片的元素会修改其底层数组中对应的元素

和它共享底层数组的切片都会观测到这些修改。

package main

import "fmt"

func main() {
	names := [4]string{
		"John",
		"Paul",
		"George",
		"Ringo",
	}
	fmt.Println(names)

	a := names[0:2]
	b := names[1:3]
	fmt.Println(a, b)

	b[0] = "XXX"
	fmt.Println(a, b)
	fmt.Println(names)
}

切片字面量类似于没有长度的数组字面量。

这是一个数组字面量:

[3]bool{true, true, false}

下面这样则会创建一个和上面相同的数组,然后再构建一个引用了它的切片:

[]bool{true, true, false}
package main

import "fmt"

func main() {
	q := []int{2, 3, 5, 7, 11, 13}
	fmt.Println(q)

	r := []bool{true, false, true, true, false, true}
	fmt.Println(r)

	s := []struct {
		i int
		b bool
	}{
		{2, true},
		{3, false},
		{5, true},
		{7, true},
		{11, false},
		{13, true},
	}
	fmt.Println(s)
}

切片的默认行为,以下表达式是等价的

a[0:10]
a[:10]
a[0:]
a[:]

切片拥有长度和容量

切片拥有 长度 和 容量

切片的长度就是它所包含的元素个数。

切片的容量是从它的第一个元素开始数,到其底层数组元素末尾的个数。

切片 s 的长度和容量可通过表达式 len(s) 和 cap(s) 来获取。

你可以通过重新切片来扩展一个切片,给它提供足够的容量。 试着修改示例程序中的切片操作,向外扩展它的长度,看看会发生什么。

package main

import "fmt"

func main() {
	s := []int{2, 3, 5, 7, 11, 13}
	printSlice(s)

	// 截取切片使其长度为 0
	s = s[:0]
	printSlice(s)

	// 扩展其长度
	s = s[:4]
	printSlice(s)

	// 舍弃前两个值
	s = s[2:]
	printSlice(s)
}

func printSlice(s []int) {
	fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}
// len=6 cap=6 [2 3 5 7 11 13]
// len=0 cap=6 []
// len=4 cap=6 [2 3 5 7]
// len=2 cap=4 [5 7]

nil切片,切片的零值是 nil

nil 切片的长度和容量为 0 且没有底层数组

package main

import "fmt"

func main() {
	var s []int
	fmt.Println(s, len(s), cap(s))
	if s == nil {
		fmt.Println("nil!")
	}
	fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}

make创建切片

package main

import "fmt"

func main() {
	a := make([]int, 5)
	printSlice("a", a)

	b := make([]int, 0, 5)
	printSlice("b", b)

	c := b[:2]
	printSlice("c", c)

	d := c[2:5]
	printSlice("d", d)
}

func printSlice(s string, x []int) {
	fmt.Printf("%s len=%d cap=%d %v\n",
		s, len(x), cap(x), x)
}

切片的切片

package main

import (
	"fmt"
	"strings"
)

func main() {
	// 创建一个井字棋(经典游戏)
	board := [][]string{
		[]string{"_", "_", "_"},
		[]string{"_", "_", "_"},
		[]string{"_", "_", "_"},
	}

	// 两个玩家轮流打上 X 和 O
	board[0][0] = "X"
	board[2][2] = "O"
	board[1][2] = "X"
	board[1][0] = "O"
	board[0][2] = "X"

	for i := 0; i < len(board); i++ {
		fmt.Printf("%s\n", strings.Join(board[i], " "))
	}
}

向切片追加元素

package main

import "fmt"

func main() {
	var s []int
	printSlice(s)

	// 可在空切片上追加
	s = append(s, 0)
	printSlice(s)

	// 这个切片会按需增长
	s = append(s, 1)
	printSlice(s)

	// 可以一次性添加多个元素
	s = append(s, 2, 3, 4)
	printSlice(s)
}

func printSlice(s []int) {
	fmt.Printf("len=%d cap=%d %v\n", len(s), cap(s), s)
}

range遍历

可遍历切片或映射,返回元素下标和元素值的副本

package main

import "fmt"

var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}

func main() {
	for i, v := range pow {
		fmt.Printf("2**%d = %d\n", i, v)
	}
}
for i, _ := range pow
for _, value := range pow

map映射

将键映射到值,映射的零值是nil,nil没有键,也不能添加键

package main

import "fmt"

type Vertex struct {
	Lat, Long float64
}

//var m map[string]Vertex

func main() {
	m := make(map[string]Vertex)
	m["Bell Labs"] = Vertex{
		40.68433, -74.39967,
	}
	m["Bell Labs2"] = Vertex{
		40.68433, -74.39967,
	}
	fmt.Println(m["Bell Labs"])
	fmt.Println(m["Bell Labs2"])
}

映射的字面量

package main

import "fmt"

type Vertex struct {
	Lat, Long float64
}

var m = map[string]Vertex{
	"Bell Labs": Vertex{
		40.68433, -74.39967,
	},
	"Google": Vertex{
		37.42202, -122.08408,
	},
}

func main() {
	fmt.Println(m)
}
package main

import "fmt"

type Vertex struct {
	Lat, Long float64
}

var m = map[string]Vertex{
	"Bell Labs": {40.68433, -74.39967},
	"Google":    {37.42202, -122.08408},
}

func main() {
	fmt.Println(m)
}

修改映射

在映射 m 中插入或修改元素:

m[key] = elem

获取元素:

elem = m[key]

删除元素:

delete(m, key)

通过双赋值检测某个键是否存在:

elem, ok = m[key]

若 key 在 m 中,ok 为 true ;否则,ok 为 false

若 key 不在映射中,则 elem 是该映射元素类型的零值。

:若 elem 或 ok 还未声明,你可以使用短变量声明:

elem, ok := m[key]

函数值

函数也是值,也可以像其它值一样传递,也可以作为其它函数的返回值和参数

package main

import (
	"fmt"
	"math"
)

func compute(fn func(float64, float64) float64) float64 {
	return fn(3, 4)
}

func main() {
	hypot := func(x, y float64) float64 {
		return math.Sqrt(x*x + y*y)
	}
	fmt.Println(hypot(5, 12))

	fmt.Println(compute(hypot))
	fmt.Println(compute(math.Pow))
}

函数闭包

Go 函数可以是一个闭包。闭包是一个函数值,它引用了其函数体之外的变量。 该函数可以访问并赋予其引用的变量值,换句话说,该函数被“绑定”到了这些变量。

例如,函数 adder 返回一个闭包。每个闭包都被绑定在其各自的 sum 变量上。

package main

import "fmt"

func adder() func(int) int {
	sum := 0
	return func(x int) int {
		sum += x
		return sum
	}
}

func main() {
	pos, neg := adder(), adder()
	for i := 0; i < 10; i++ {
		fmt.Println(
			pos(i),
			neg(-2*i),
		)
	}
}

0
Go
  1. 支付宝打赏

    qrcode alipay
  2. 微信打赏

    qrcode weixin

评论区